3.1887 \(\int \frac{(1-2 x)^{3/2} (3+5 x)^3}{2+3 x} \, dx\)

Optimal. Leaf size=95 \[ -\frac{125}{108} (1-2 x)^{9/2}+\frac{400}{63} (1-2 x)^{7/2}-\frac{1027}{108} (1-2 x)^{5/2}-\frac{2}{243} (1-2 x)^{3/2}-\frac{14}{243} \sqrt{1-2 x}+\frac{14}{243} \sqrt{\frac{7}{3}} \tanh ^{-1}\left (\sqrt{\frac{3}{7}} \sqrt{1-2 x}\right ) \]

[Out]

(-14*Sqrt[1 - 2*x])/243 - (2*(1 - 2*x)^(3/2))/243 - (1027*(1 - 2*x)^(5/2))/108 + (400*(1 - 2*x)^(7/2))/63 - (1
25*(1 - 2*x)^(9/2))/108 + (14*Sqrt[7/3]*ArcTanh[Sqrt[3/7]*Sqrt[1 - 2*x]])/243

________________________________________________________________________________________

Rubi [A]  time = 0.0308338, antiderivative size = 95, normalized size of antiderivative = 1., number of steps used = 6, number of rules used = 4, integrand size = 24, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.167, Rules used = {88, 50, 63, 206} \[ -\frac{125}{108} (1-2 x)^{9/2}+\frac{400}{63} (1-2 x)^{7/2}-\frac{1027}{108} (1-2 x)^{5/2}-\frac{2}{243} (1-2 x)^{3/2}-\frac{14}{243} \sqrt{1-2 x}+\frac{14}{243} \sqrt{\frac{7}{3}} \tanh ^{-1}\left (\sqrt{\frac{3}{7}} \sqrt{1-2 x}\right ) \]

Antiderivative was successfully verified.

[In]

Int[((1 - 2*x)^(3/2)*(3 + 5*x)^3)/(2 + 3*x),x]

[Out]

(-14*Sqrt[1 - 2*x])/243 - (2*(1 - 2*x)^(3/2))/243 - (1027*(1 - 2*x)^(5/2))/108 + (400*(1 - 2*x)^(7/2))/63 - (1
25*(1 - 2*x)^(9/2))/108 + (14*Sqrt[7/3]*ArcTanh[Sqrt[3/7]*Sqrt[1 - 2*x]])/243

Rule 88

Int[((a_.) + (b_.)*(x_))^(m_.)*((c_.) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_.), x_Symbol] :> Int[ExpandI
ntegrand[(a + b*x)^m*(c + d*x)^n*(e + f*x)^p, x], x] /; FreeQ[{a, b, c, d, e, f, p}, x] && IntegersQ[m, n] &&
(IntegerQ[p] || (GtQ[m, 0] && GeQ[n, -1]))

Rule 50

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[((a + b*x)^(m + 1)*(c + d*x)^n)/(b*
(m + n + 1)), x] + Dist[(n*(b*c - a*d))/(b*(m + n + 1)), Int[(a + b*x)^m*(c + d*x)^(n - 1), x], x] /; FreeQ[{a
, b, c, d}, x] && NeQ[b*c - a*d, 0] && GtQ[n, 0] && NeQ[m + n + 1, 0] &&  !(IGtQ[m, 0] && ( !IntegerQ[n] || (G
tQ[m, 0] && LtQ[m - n, 0]))) &&  !ILtQ[m + n + 2, 0] && IntLinearQ[a, b, c, d, m, n, x]

Rule 63

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - (a*d)/b + (d*x^p)/b)^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rubi steps

\begin{align*} \int \frac{(1-2 x)^{3/2} (3+5 x)^3}{2+3 x} \, dx &=\int \left (\frac{5135}{108} (1-2 x)^{3/2}-\frac{400}{9} (1-2 x)^{5/2}+\frac{125}{12} (1-2 x)^{7/2}-\frac{(1-2 x)^{3/2}}{27 (2+3 x)}\right ) \, dx\\ &=-\frac{1027}{108} (1-2 x)^{5/2}+\frac{400}{63} (1-2 x)^{7/2}-\frac{125}{108} (1-2 x)^{9/2}-\frac{1}{27} \int \frac{(1-2 x)^{3/2}}{2+3 x} \, dx\\ &=-\frac{2}{243} (1-2 x)^{3/2}-\frac{1027}{108} (1-2 x)^{5/2}+\frac{400}{63} (1-2 x)^{7/2}-\frac{125}{108} (1-2 x)^{9/2}-\frac{7}{81} \int \frac{\sqrt{1-2 x}}{2+3 x} \, dx\\ &=-\frac{14}{243} \sqrt{1-2 x}-\frac{2}{243} (1-2 x)^{3/2}-\frac{1027}{108} (1-2 x)^{5/2}+\frac{400}{63} (1-2 x)^{7/2}-\frac{125}{108} (1-2 x)^{9/2}-\frac{49}{243} \int \frac{1}{\sqrt{1-2 x} (2+3 x)} \, dx\\ &=-\frac{14}{243} \sqrt{1-2 x}-\frac{2}{243} (1-2 x)^{3/2}-\frac{1027}{108} (1-2 x)^{5/2}+\frac{400}{63} (1-2 x)^{7/2}-\frac{125}{108} (1-2 x)^{9/2}+\frac{49}{243} \operatorname{Subst}\left (\int \frac{1}{\frac{7}{2}-\frac{3 x^2}{2}} \, dx,x,\sqrt{1-2 x}\right )\\ &=-\frac{14}{243} \sqrt{1-2 x}-\frac{2}{243} (1-2 x)^{3/2}-\frac{1027}{108} (1-2 x)^{5/2}+\frac{400}{63} (1-2 x)^{7/2}-\frac{125}{108} (1-2 x)^{9/2}+\frac{14}{243} \sqrt{\frac{7}{3}} \tanh ^{-1}\left (\sqrt{\frac{3}{7}} \sqrt{1-2 x}\right )\\ \end{align*}

Mathematica [A]  time = 0.0347753, size = 61, normalized size = 0.64 \[ \frac{98 \sqrt{21} \tanh ^{-1}\left (\sqrt{\frac{3}{7}} \sqrt{1-2 x}\right )-3 \sqrt{1-2 x} \left (31500 x^4+23400 x^3-17649 x^2-15679 x+7456\right )}{5103} \]

Antiderivative was successfully verified.

[In]

Integrate[((1 - 2*x)^(3/2)*(3 + 5*x)^3)/(2 + 3*x),x]

[Out]

(-3*Sqrt[1 - 2*x]*(7456 - 15679*x - 17649*x^2 + 23400*x^3 + 31500*x^4) + 98*Sqrt[21]*ArcTanh[Sqrt[3/7]*Sqrt[1
- 2*x]])/5103

________________________________________________________________________________________

Maple [A]  time = 0.006, size = 65, normalized size = 0.7 \begin{align*} -{\frac{2}{243} \left ( 1-2\,x \right ) ^{{\frac{3}{2}}}}-{\frac{1027}{108} \left ( 1-2\,x \right ) ^{{\frac{5}{2}}}}+{\frac{400}{63} \left ( 1-2\,x \right ) ^{{\frac{7}{2}}}}-{\frac{125}{108} \left ( 1-2\,x \right ) ^{{\frac{9}{2}}}}+{\frac{14\,\sqrt{21}}{729}{\it Artanh} \left ({\frac{\sqrt{21}}{7}\sqrt{1-2\,x}} \right ) }-{\frac{14}{243}\sqrt{1-2\,x}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((1-2*x)^(3/2)*(3+5*x)^3/(2+3*x),x)

[Out]

-2/243*(1-2*x)^(3/2)-1027/108*(1-2*x)^(5/2)+400/63*(1-2*x)^(7/2)-125/108*(1-2*x)^(9/2)+14/729*arctanh(1/7*21^(
1/2)*(1-2*x)^(1/2))*21^(1/2)-14/243*(1-2*x)^(1/2)

________________________________________________________________________________________

Maxima [A]  time = 1.73126, size = 111, normalized size = 1.17 \begin{align*} -\frac{125}{108} \,{\left (-2 \, x + 1\right )}^{\frac{9}{2}} + \frac{400}{63} \,{\left (-2 \, x + 1\right )}^{\frac{7}{2}} - \frac{1027}{108} \,{\left (-2 \, x + 1\right )}^{\frac{5}{2}} - \frac{2}{243} \,{\left (-2 \, x + 1\right )}^{\frac{3}{2}} - \frac{7}{729} \, \sqrt{21} \log \left (-\frac{\sqrt{21} - 3 \, \sqrt{-2 \, x + 1}}{\sqrt{21} + 3 \, \sqrt{-2 \, x + 1}}\right ) - \frac{14}{243} \, \sqrt{-2 \, x + 1} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((1-2*x)^(3/2)*(3+5*x)^3/(2+3*x),x, algorithm="maxima")

[Out]

-125/108*(-2*x + 1)^(9/2) + 400/63*(-2*x + 1)^(7/2) - 1027/108*(-2*x + 1)^(5/2) - 2/243*(-2*x + 1)^(3/2) - 7/7
29*sqrt(21)*log(-(sqrt(21) - 3*sqrt(-2*x + 1))/(sqrt(21) + 3*sqrt(-2*x + 1))) - 14/243*sqrt(-2*x + 1)

________________________________________________________________________________________

Fricas [A]  time = 1.42657, size = 215, normalized size = 2.26 \begin{align*} \frac{7}{729} \, \sqrt{7} \sqrt{3} \log \left (-\frac{\sqrt{7} \sqrt{3} \sqrt{-2 \, x + 1} - 3 \, x + 5}{3 \, x + 2}\right ) - \frac{1}{1701} \,{\left (31500 \, x^{4} + 23400 \, x^{3} - 17649 \, x^{2} - 15679 \, x + 7456\right )} \sqrt{-2 \, x + 1} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((1-2*x)^(3/2)*(3+5*x)^3/(2+3*x),x, algorithm="fricas")

[Out]

7/729*sqrt(7)*sqrt(3)*log(-(sqrt(7)*sqrt(3)*sqrt(-2*x + 1) - 3*x + 5)/(3*x + 2)) - 1/1701*(31500*x^4 + 23400*x
^3 - 17649*x^2 - 15679*x + 7456)*sqrt(-2*x + 1)

________________________________________________________________________________________

Sympy [A]  time = 38.5398, size = 126, normalized size = 1.33 \begin{align*} - \frac{125 \left (1 - 2 x\right )^{\frac{9}{2}}}{108} + \frac{400 \left (1 - 2 x\right )^{\frac{7}{2}}}{63} - \frac{1027 \left (1 - 2 x\right )^{\frac{5}{2}}}{108} - \frac{2 \left (1 - 2 x\right )^{\frac{3}{2}}}{243} - \frac{14 \sqrt{1 - 2 x}}{243} - \frac{98 \left (\begin{cases} - \frac{\sqrt{21} \operatorname{acoth}{\left (\frac{\sqrt{21} \sqrt{1 - 2 x}}{7} \right )}}{21} & \text{for}\: 2 x - 1 < - \frac{7}{3} \\- \frac{\sqrt{21} \operatorname{atanh}{\left (\frac{\sqrt{21} \sqrt{1 - 2 x}}{7} \right )}}{21} & \text{for}\: 2 x - 1 > - \frac{7}{3} \end{cases}\right )}{243} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((1-2*x)**(3/2)*(3+5*x)**3/(2+3*x),x)

[Out]

-125*(1 - 2*x)**(9/2)/108 + 400*(1 - 2*x)**(7/2)/63 - 1027*(1 - 2*x)**(5/2)/108 - 2*(1 - 2*x)**(3/2)/243 - 14*
sqrt(1 - 2*x)/243 - 98*Piecewise((-sqrt(21)*acoth(sqrt(21)*sqrt(1 - 2*x)/7)/21, 2*x - 1 < -7/3), (-sqrt(21)*at
anh(sqrt(21)*sqrt(1 - 2*x)/7)/21, 2*x - 1 > -7/3))/243

________________________________________________________________________________________

Giac [A]  time = 2.36694, size = 143, normalized size = 1.51 \begin{align*} -\frac{125}{108} \,{\left (2 \, x - 1\right )}^{4} \sqrt{-2 \, x + 1} - \frac{400}{63} \,{\left (2 \, x - 1\right )}^{3} \sqrt{-2 \, x + 1} - \frac{1027}{108} \,{\left (2 \, x - 1\right )}^{2} \sqrt{-2 \, x + 1} - \frac{2}{243} \,{\left (-2 \, x + 1\right )}^{\frac{3}{2}} - \frac{7}{729} \, \sqrt{21} \log \left (\frac{{\left | -2 \, \sqrt{21} + 6 \, \sqrt{-2 \, x + 1} \right |}}{2 \,{\left (\sqrt{21} + 3 \, \sqrt{-2 \, x + 1}\right )}}\right ) - \frac{14}{243} \, \sqrt{-2 \, x + 1} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((1-2*x)^(3/2)*(3+5*x)^3/(2+3*x),x, algorithm="giac")

[Out]

-125/108*(2*x - 1)^4*sqrt(-2*x + 1) - 400/63*(2*x - 1)^3*sqrt(-2*x + 1) - 1027/108*(2*x - 1)^2*sqrt(-2*x + 1)
- 2/243*(-2*x + 1)^(3/2) - 7/729*sqrt(21)*log(1/2*abs(-2*sqrt(21) + 6*sqrt(-2*x + 1))/(sqrt(21) + 3*sqrt(-2*x
+ 1))) - 14/243*sqrt(-2*x + 1)